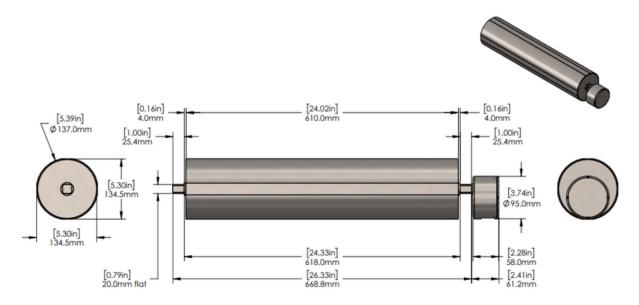
**PowerFlex 525** 

# **Tuning Guide**

# **One Motion Tuning Example / Best Practices**

## **Overview**

One Motion Products are designed for tough washdown sanitary environments (IP69K-rated), like food processing plants handling meat, cheese, or baked goods. Mag-Drives are built for reliability, require zero maintenance under normal conditions, and come with a **3-year warranty**. They're rated to last longer than all other solutions on the market.


This guide helps your maintenance team manage current levels during setup and troubleshooting to keep the Mag-Drives running efficiently.

## **Example Product:**

This is a relative guide based on example part (OD69-60-135-610-11193).

Each One Motion product has its own technical data specs.

Contact Technical Support for your PN technical data information.



We'll use an example Mag-Drive with these ratings (found on its One Motion product data sheet example):

|       |                    | Mechanical                               |
|-------|--------------------|------------------------------------------|
| 1.    | Peak Torque:       | 60Nm (44.3 ft/lbs)                       |
| 2.    | Torque:            | 20Nm (14.8 ft/lbs)                       |
| 3.    | Belt Pull:         | 276 N (62 lbs)                           |
| 4.    | Synchronous Speed: | 257 RPM                                  |
| 5.    | IP Rating:         | 69                                       |
| 6.    | Option:            |                                          |
| 7.    | Mounting :         | Four Flats                               |
| 8.    | Min / Max Width:   | 618mm (24.33") / 668.8mm (26.33")        |
| 9.    | Weight:            | 40 kg, (86 lbs)                          |
| 10.   | Diameter/Shell:    | 135mm (5.3") / 10mm (0.39")              |
| - 11. | Face Width:        | 610mm (24.02")                           |
| 12.   | Shell Face:        | Square Drive                             |
| 13.   | Series:            | Pulley 135 Series                        |
| 14.   | Connector:         | IP69k-Junction Box, Conduit Threads: M20 |
|       |                    |                                          |

|     | Electrical                                 |      |
|-----|--------------------------------------------|------|
| 1.  | Power: 0.54 / 1.61 / 0.67 kw               |      |
| 2.  | Current: 1.19 / 3.57 amps                  |      |
| 3.  | Averages: 59.22 Nm / 107.99 RPM / 3.53 amp | os v |
| 4.  | BEMF @ 60hz: 304.545 V                     |      |
| 5.  | Name Plate Volts: 460 v                    |      |
| 6.  | Lq / Ld: 88.02 / 56.1 mH                   |      |
| 7.  | Resitance: 5.89 / 11.18 ohms               |      |
| 8.  | Inductance: 40.46 / 89.55 mH               |      |
| 9.  | Kt : 16.79 Nm / Amp                        |      |
| 10. | Ke: 1.675 Volts / RPM (BEMF)               |      |
| 11. | Wire Size / Turns: 0.9 mm / 52 turns       |      |
| 12. | Core Assembly: Single Core                 |      |
| 13. | Lam Stack Length: 225 mm / (sheets) 219 mm |      |

# **Understanding Current Limits**

Example Current Values (Shown in e.g. data sheet above)

- Continuous Current: 1.19 A
- Maximum Current: 3.57 A

**Important:** Continuous and max current values are **product specific**. Always check the One Motion product data sheet for your Mag-Drive's exact ratings before setting up or troubleshooting.

## What Are Current Limits?

Current limits tell you how much electrical current your Mag-Drive can handle safely. Going over these limits can overheat the Mag-Drive, causing damage or early failure. Here's what they mean:

## **Continuous Current**

This is the normal operating current for steady, continuous use. For our example Mag-Drive, it's 1.19 A (check your product data sheet for your Mag-Drive's value).

Stay Safe: Run the Mag-Drive at or below 1.0–1.1 A to keep it cool and extend its life.

## **Maximum Current**

This is the highest current the Mag-Drive can handle during short bursts, like startup or sudden heavy loads. For our example Mag-Drive, it's 3.57 A (again, check your product data sheet).

▲ Limit Time: Don't let the Mag-Drive run near max current for more than 20% of its duty cycle. e.g. For a 10-minute cycle (600 seconds), that's 120 seconds max. For a 5-minute cycle (300 seconds), it's 60 seconds max.

## Best Practices for Use (PowerFlex 525 as Example)

In a washdown environment, Mag-Drives face wet conditions, high-pressure cleaning, and potential load spikes from slippery surfaces or product surges. Follow these best practices to keep your One Motion Mag-Drive safe and running well:

| Best Practice                            | Target                                           | Why It Matters                                             |
|------------------------------------------|--------------------------------------------------|------------------------------------------------------------|
| Keep continuous current below 1/3 of max | ≤ 1.19 A (check your data<br>sheet)              | Stops the Mag-Drive from overheating during long runs      |
| Run in the safe range                    | 1.0–1.1 A                                        | Gives a safety buffer to prevent damage                    |
| Limit max current time                   | ≤ 20% of duty cycle (e.g., 120<br>sec in 10 min) | Prevents heat buildup and stress during startups or surges |
| Check current often                      | Use drive's B003 parameter                       | Let's you spot problems early and adjust                   |

## How to Set Up Your PowerFlex 525 Drive

The Allen-Bradley PowerFlex 525 drive helps control and protect your Mag-Drive. Use Connected Components Workbench (CCW) software to set it up with the following settings, updated to align with your Mag-Drive's needs in a washdown environment:

## Step 1: Enter Mag-Drive Data

Use the values from your One Motion product data sheet to set these parameters:

| Parameter | Setting                            | What It Does                   |
|-----------|------------------------------------|--------------------------------|
| P033      | 60 Hz                              | Sets the Mag-Drive's frequency |
| P034      | 1.19 A (use your data sheet value) | Sets the continuous current    |
| P036      | 257 RPM                            | Sets the Mag-Drive's speed     |
| P484/485  | 3.22 A                             | Sets a safe overcurrent limit  |

## Step 2: Set Up Safety Protections

These settings stop the Mag-Drive from running too hot or overloading:

| Parameter | Setting                       | What It Does                                |
|-----------|-------------------------------|---------------------------------------------|
| A484      | 4.00 A                        | Set drive fault limit (absolute<br>limit)   |
| A486      | 2.38 A (1.19 × 2.0)           | First overcurrent warning level             |
| A487      | 10 sec                        | Waits 10 sec before stopping if overcurrent |
| A488      | 3.57 A (use your max current) | Final overcurrent limit                     |
| A489      | 5 sec                         | Stops if max current lasts over<br>5 sec    |

## Step 3: Adjust Start and Stop Settings

These settings help avoid big current spikes when starting or stopping:

| Parameter | Setting | What It Does                                           |
|-----------|---------|--------------------------------------------------------|
| P041      | 10 sec  | Mag-Drive speed to target Hz<br>(application specific) |
| P042      | 10 sec  | Mag-Drive speed to 0 Hz<br>(application specific)      |

## 5. Troubleshooting in a Washdown Environment

Here's how to handle common issues in a washdown sanitary environment, like after cleaning or during heavy loads, using the updated settings:

## Scenario A: Normal Operation (Cheese Block Conveyor)

Situation: Conveyor moving cheese blocks (2 kg each) for packaging, running 8 hours a day.

**Goal:** Keep current at 1.0–1.1 A.

## Steps:

- Check B003 on the drive to see live current (should be 1.0–1.1 A).
- If current goes over 1.19 A (e.g., from cheese residue buildup), clean the conveyor to reduce friction.
- Drive will stop if current stays above 2.38 A for 10 sec (A486/A487 settings).

## Scenario B: Restart After Washdown (Wet Trays)

Situation: Conveyor restarts after a high-pressure washdown, moving wet trays of chicken.

Goal: Avoid max current (3.57 A) for more than 60 sec in a 5-min cycle.

## Steps:

- Soft start (P041 at 10 sec) keeps startup current around 2.5 A.
- If current hits 3.57 A (e.g., trays stick due to suction), drive stops after 5 sec (A489 setting).
- After startup, ensure current settles to 1.0–1.1 A; dry trays if needed to reduce sticking.

#### Scenario C: Heavy Load Surge (Meat Packages)

Situation: Sudden surge of heavy meat packages (3 kg each) on the conveyor.

Goal: Limit max current (3.57 A) to under 120 sec in a 10-min cycle.

#### Steps:

- Drive stops if current hits 3.57 A for over 5 sec (A489 setting).
- If the conveyor slips, increase A533 (suggest 1 Hz increment) to improve grip.
- If speed stutters, increase A581 (suggest +2) to smooth it out.
- Spread out the packages to lower the current back to 1.0–1.1 A.

#### 6. Quick Reference Summary

| Operation Type     | Safe Limit                  | Drive Settings to Check |
|--------------------|-----------------------------|-------------------------|
| Normal Running     | 1.0–1.1 A (max 1.19 A)      | B003, A484              |
| Startup or Surge   | ≤ 3.57 A for ≤ 20% of cycle | A488/A489, P041         |
| Safety Protections | Stop if over limits         | A486/A487, A488/A489    |

Contact Technical Support for your specific part number's technical data information.

## **PowerFlex 525 Parameter Reference for One Motion PM Motors**

This table provides a complete breakdown of essential parameters used to configure, monitor, and protect One Motion permanent magnet motors with the PowerFlex 525 VFD.

| Parameter         | Name                       | Recommended Value | Description                                              |
|-------------------|----------------------------|-------------------|----------------------------------------------------------|
| Basic Motor Setup | (P Parameters)             |                   |                                                          |
| P031              | Motor NP Volts             | As per tech sheet | Nominal voltage rating of the motor                      |
| P032              | Motor NP Hertz             | 60 Hz             | Rated operating<br>frequency                             |
| P033              | OL Current                 | 1.19 A            | Sets overload threshold<br>slightly below max<br>current |
| P034              | Motor NP FLA               | 1.19 A            | Motor's continuous rated current                         |
| P035              | Motor NP Poles             | 28                | Number of motor poles<br>(based on motor RPM)            |
| P036              | Motor NP RPM               | 257 RPM           | Rated speed at 55 Hz                                     |
| P037              | Motor NP Power             | 1.61 kW           | Motor's output power<br>(HP or kW)                       |
| P039              | Torque Performance<br>Mode | 1                 | Enable PM motor control                                  |
| P041              | Accel Time                 | 10 sec            | Ramp-up time to limit inrush current                     |

| P042                  | Decel Time                  | 10 sec  | Controlled stop to prevent overvoltage                        |
|-----------------------|-----------------------------|---------|---------------------------------------------------------------|
| P484                  | OL Current Level 1          | 3.57 A  | Trip level to detect sustained overloads                      |
| P485                  | OL Time Level 1             | 3.57 A  | Trip level to detect<br>sustained overloads<br>(matches P484) |
| Advanced Protection & | & Current Limiting (A Paran | neters) |                                                               |
| A484                  | Current Limit One           | 4.00 A  | Sets non-fault current<br>cap for continuous<br>operation     |
| A486                  | Shear Pin 1 Level           | 2.38 A  | First overcurrent fault threshold                             |
| A487                  | Shear Pin 1 Time            | 10 sec  | Duration allowed at A486 before fault                         |
| A488                  | Shear Pin 2 Level           | 3.57 A  | Max current (absolute<br>fault limit)                         |
| A489                  | Shear Pin 2 Time            | 5 sec   | Duration allowed at A488<br>before trip                       |
| A516                  | PM Initial Selection        | 1 (HFI) | Prevents rollback at startup                                  |
| A517                  | PM DC Injection<br>Current  | 100%    | Ensures proper<br>alignment during startup                    |
| A518                  | PM Align Time               | 0 sec   | Disables alignment<br>delay for faster startup                |

| A527                           | PM FWKn 1Kp              | 500%              | Improves field<br>weakening performance                        |
|--------------------------------|--------------------------|-------------------|----------------------------------------------------------------|
| A528                           | PM FWKn 2Kp              | 500%              | Enhances high-speed<br>stability                               |
| A531                           | Start Boost              | 6.0%              | Improves startup torque                                        |
| A532                           | Break Voltage            | 55.0%             | Improves start under<br>load or fixes overloads                |
| A533                           | Break Frequency          | +1 Hz as needed   | Prevents slippage<br>during shock loads                        |
| A581                           | PM Stable 1<br>Frequency | +2                | Reduces speed ripple or torque instability                     |
| A585                           | PM Motor Type            | 1 (Surface Mount) | Select correct PM motor profile                                |
| A586                           | PM Stepload Kp           | 10%               | Improves step-load<br>performance                              |
| A587/A588                      | PM Efficiency 1/2        | 1900%             | Stabilizes current and reduces oscillation                     |
| Live Monitoring (B Parameters) |                          |                   |                                                                |
| B003                           | Output Current           | Live value        | Real-time monitoring of<br>motor draw (use for<br>diagnostics) |